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Using molecular dynamics simulation we investigate the dynamics in a two-dimensional binary mixture at a
low temperature and at high densities. We increase the size ratio of the diameters of the two components or the
fraction of the larger particles. Then changeovers occur from polycrystal to glass with proliferation of defects.
The relationship between the degree of disorder and the slow dynamics is studied by simultaneous visualiza-
tion of a disorder variable Dj introduced in our previous paper T. Hamanaka and A. Onuki�Phys. Rev. E 74,
011506 �2006�� and the particle displacement �r j in a long time interval. In polycrystal, the particles in the
grain boundary regions have large Dj and a relatively large mobility, producing significant dynamic heteroge-
neity on long time scales. In the crossover from polycrystal to glass, the crystalline regions become narrow, but
the particles with relatively large Dj still trigger the formation of chainlike particle motions, leading to the
dynamic heterogeneity.
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I. INTRODUCTION

A large number of molecular dynamics simulations have
been performed to study the liquid-glass transition in two-
dimensional �2D� and three-dimensional �3D� binary mix-
tures �1–10�, where the time scale of the particle motions
becomes dramatically slowed down with lowering of the
temperature T. The size ratio �2 /�1 of the diameters �1 and
�2 of the two components has been chosen to maximize dis-
ruption of the crystal structure. As a salient feature, signifi-
cant heterogeneity in the cooperative particle motions on
long time scales has been reported, where successive string-
like motions form large-scale clusters growing at low tem-
peratures. In particular, the heterogeneity correlation length �
was determined from the distribution of broken bonds in 2D
and 3D �3� and by a four-point dynamic susceptibility in 3D
�8�. Recently attention has been paid to the connection be-
tween the structure and the slow dynamics. Vollmayr-Lee et
al. �11� found in 3D that mobile particles �in their definition�
are surrounded by fewer neighbors than the others. Widmer-
Cooper and Harrowell �12� detected a clear correlation be-
tween the short-time heterogeneity in a local Debye-Waller
factor and the long-time dynamic heterogeneity in 2D. In
their one-component model with fivefold pair interaction in
2D, Shintani and Tanaka �13� introduced medium-range
crystalline order strongly correlated to the slow dynamics in
glass.

Also varying the size ratio �2 /�1 as well as T �14–16�, we
have recently investigated changeovers among crystal, poly-
crystal, and glass at fixed composition in 2D �17�. For weak
size dispersity and at low T, the mixture is in a crystal state
with a small number of defects. With increasing �2 /�1, poly-
crystal and glass states are subsequently realized. These three
states can be distinguished using a disorder variable Dj sup-
ported by each particle j, since snapshots of Dj are highly
heterogeneous in polycrystal and glass. The grain boundaries
are pinned in the presence of size dispersity, while they
emerge as rapidly varying thermal fluctuations near the 2D
melting in one-component systems.

In this paper, we aim to investigate the dynamics in poly-
crystal and glass in a model binary mixture with size disper-
sity using the disorder variable Dj, the particle displacement
�r j, and the bond breakage �3�. We may then study the rela-
tionship between the local disorder at a particular time and
the dynamic heterogeneity obtained from the particle con-
figurations at two times much separated. The origin of the
dynamic heterogeneity will turn out to be rather obvious for
polycrystal. We thus study the crossover from polycrystal to
glass, where local crystalline order is appreciable.

The organization of this paper is as follows. In Sec. II A,
we will explain our method and introduce the disorder vari-
able Dj. We will then visualize Dj and �r j in Sec. II B and
calculate the time correlation function and the mean square
displacement in Sec. II C. In Sec. II D, we will examine the
distribution of the displacements and that of the broken
bonds as a function of a parameter S representing the degree
of disorder.

II. NUMERICAL RESULTS

A. Method and disorder variable

As in our previous paper �17�, we performed molecular
dynamics simulation of a 2D binary mixture interacting via a
truncated Lenard-Jones potential of the form v���r�
=4������ /r�12− ���� /r�6�−C�� �� ,�=1,2�, characterized
by the energy � and the soft-core diameter ���= ���

+��� /2. For r�rcut=3.2�1, we set v���r�=0 and the con-
stant C�� ensures the continuity of v���r� at the cutoff r
=rcut. The total particle number is fixed at N=N1+N2
=1000. The volume V is chosen such that the volume frac-
tion of the soft-core regions is fixed at 0.9 or

	 = �N1�1
2 + N2�2

2�/V = 0.9. �2.1�

With the mass ratio being m1 /m2= ��1 /�2�2, we integrated
the Newton equations using the leapfrog algorithm under the
periodic boundary condition. The temperature was controlled
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with the Nose-Hoover thermostat �18�. The time step of in-
tegration is 0.002
 with


 = �1
�m1/� . �2.2�

Hereafter we will measure time in units of 
. We first equili-
brated the system in a liquid state at T=2� /kB in a time
interval of 103 and then quenched it to the final temperature
T=0.2� /kB. The total simulation time was 2.2�104 for each
run. After a relaxation time of order 5000, there was no ap-
preciable time evolution in various quantities obtained as an
average over the particles �see Fig. 7 of Ref. �17��. There was
also no tendency of phase separation in all the simulations in
our previous and present papers �see Fig. 1 of Ref. �17�, as
an example�. However, our simulation time became compa-
rable to the structural relaxation time 
� in glass at the largest
�2 /�1=1.4. Much longer simulation times are thus needed
for a more quantitative analysis of such slow structural re-
laxations.

We consider a deviation from the hexagonal order for
each particle j. In this work, the two particles j�� and k
�� are bonded if their distance �r j −rk� is shorter than 1.5���

�3�. For each j, we consider the sum �19�

� j = �
k�bonded

exp�6i
 jk�

= �� j�e6i�j , �2.3�

where 
 jk is the angle of the relative vector rk−r j with re-
spect to the x axis. The angle � j defined in the second line
represents the sixfold orientation order. The correlation func-
tion g6�r� of the space-dependent quantity � j� j��r j −r� has
been calculated for one-component systems �20�. See item
�viii� in the last section for results on g6�r� in our system. In
our previous work �17�, we constructed another non-
negative-definite variable representing the degree of disorder
for each particle j by

Dj = 2 �
k�bonded

�1 − cos 6�� j − �k�� . �2.4�

For a perfect crystal at low T this quantity arises from the
thermal vibrations and is nearly zero, but for particles around
defects it assumes large values in the range 5–20. The aver-

age D̄=� jDj /N over the particles conveniently represents the
degree of overall disorder, which is small in crystal and large
in glass and liquid. To distinguish between glass and liquid,
we furthermore need to examine the dynamics.

We performed two series of simulations. In one series we
increase the size ratio �2 /�1 at N1=N2=500. In the other
series we increase the fraction of large particles,

c = N2/N , �2.5�

at �2 /�1=1.4. In Fig. 1, the curve of D̄ vs �2 /�1 at c=0.5

and that of D̄ vs c at �2 /�1=1.4 are presented �21�. They are
taken in steady states at T=0.2� /kB and 	=0.9. The former
curve was already presented in Fig. 8 in our previous paper
�17�.

As can be seen in Fig. 2, crystal, polycrystal, and glass are
realized with increasing �2 /�1 or c. On the curve for the first

series, crystal states with only a few defects are realized for
�2 /�1�1.15, but defects are abruptly proliferated for
�2 /�1�1.2. On that for the second series, defects are always
generated around each large particle �see the right panel of

Fig. 3 below� leading to a strong increase D̄�30c for c
�0.2.

In our calculations �except those in Figs. 4–6�, the par-
ticle positions used are the time averages taken over an in-
terval with width 1. That is, the time average 	t

t+1dt�r j�t��
was used in place of r j�t�. This short-time smoothing of the
particle positions was also used in our previous paper �17�.

B. Changeover with increasing size dispersity and
composition

In Fig. 2, we show snapshots of Dj at t=1.2�104 for �a�
�2 /�1=1.2, �b� 1.25, �c� 1.3, and �d� 1.35 in the first series
and for �a�� c=0.02, �b�� 0.05, �c��0.125, and �d�� 0.2 at
�2 /�1=1.4 in the second series. The color of the particles
varies in the order of rainbow, being violet for Dj =0 and red
for the maximum of Dj. The arrows are the displacement
vectors from the particle position at this time to that at t
=2.2�104, where the width of the time interval is 104. Here
the particles with displacement longer than �1 are called the
mobile particles. In this visualization we clearly recognize
polycrystal states intermediate between crystal and glass
states. In the first series at c=1/2, defects are accumulated
around the grain boundaries and the crystalline regions be-
come narrow and ill defined rather abruptly around �2 /�1
�1.25. In the second series at �2 /�1=1.4, the large particles
form grain boundaries and the crystalline regions composed
of the small particles are well ordered for small c�0.125.
The crystalline regions are composed of the two components
in the first series and of the smaller component only in the
second series. We shall see a number of different dynamical
effects in these two polycrystal states. In Fig. 3, the particle
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FIG. 1. Average disorder parameter D̄=� jDj /N at T=0.2� /kB

and 	=0.9 with changing the size ratio �2 /�1 at N1=N2=500
�lower curve� �17� and with changing the fraction c=N2 /N of the
larger particles at �2 /�1=1.4 �upper curve�.
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configurations around grain boundaries are shown for the
polycrystal states �a� and �b�� in Fig. 2, where the circles
have diameters �1 �in black� and �2 �in gray�. We can hardly

find the grain boundaries for �a� with Fig. 3 only, while the
large particles are in the grain boundary regions for �b��.

We further discuss the dynamics revealed in Fig. 2. �i� At
any �2 /�1, mobile particles with large displacements form
strings. With increasing �2 /�1 in �a�–�d� and c in �a��–�d��,
such strings tend to aggregate, resulting in significant dy-
namic heterogeneities. This feature has been observed nu-
merically in supercooled liquids and glass �3,4,7�, but it can
be seen here also in polycrystal with size dispersity. �ii� The
mobile particles have relatively large Dj in many cases and,
at least, particles with large Dj trigger the formation of the
strings. Small particles bonded to a large particle frequently
become mobile even when the large one remains immobile,
which is evident in the second series �see the lower panel of
Fig. 8 below also�. �iii� In polycrystal states such as �a�, �b�,
and �a��–�d�� the mobile particles are mostly in the grain
boundary regions with large Dj. The dynamic heterogeneity
in polycrystal such as in �b� and �c�� is thus ascribed to a
relatively high mobility of the particles in the grain boundary
regions. �iv� In the glass states �c�, �d�, and �d��, the degree
of disorder is enhanced and the grain boundaries become ill
defined, but we can still see the aggregation of the strings
extending longer than the heterogeneities of Dj. For �2 /�1
=1.4 and c=1/2 �see Fig. 4 of Ref. �17��, the mobile par-
ticles are considerably fewer than in �d�, so a wider time
interval is needed for visualization of the displacements. �v�
In addition, in polycrystal and glass, crystalline regions con-
sisting of small Dj can undergo collective motions induced
by large displacements of the surrounding particles. Such
motions will be clearly seen in expanded snapshots of Fig. 8.
We recognize that they remain small in quiescent states, but
we will show that they can be large in shear flow �see item
�vii� in the last section�.

We may consider the particle-number density as a func-
tion of the disorder variable Dj. Because the range 0�Dj
�20 realized is rather wide, we use

Sj = �Dj �2.6�

and define the number density

n�S� = �
j=1

N



�S − Sj��/N , �2.7�

where 
�x� is the step function, being 1 for x�0 and 0 for
x�0. The average 
¯� in Eq. �2.7� is over the time and over
five independent runs. In Fig. 4, we show the derivative
dn�S� /dS, which is the distribution of the density as a func-
tion of S. The area below each curve is unity or
	0

�dSdn�S� /dS=1. The peaks of the curves �a� and �a�� at
small S arise from the particles forming crystalline regions.
Notice that these peaks are separated by a small amount be-
cause the crystalline regions in �a��are more frustrated �see
Fig. 3�. The distributions for the glass states �d� and �d�� are
broad in the range S�4, but a mild peak representing crys-
talline order still remains at S�0.5 for �d��.

(a) σ2/σ1 =1.2, c = 0.5

(c) σ2/σ1 =1.3, c = 0.5 (c') c = 0.125, σ2/σ1 =1.4

(d) σ2/σ1 =1.35, c = 0.5

(b) σ2/σ1 =1.25, c = 0.5 (b') c = 0.05, σ2/σ1 =1.4

(a') c = 0.02, σ2/σ1 =1.4

maxmin

(d') c = 0.2, σ2/σ1 =1.4

FIG. 2. �Color online� Disorder variable Dj in Eq. �2.4� at T
=0.2� /kB and 	=0.9. Left: �a� �2 /�1=1.2, �b� 1.25, �c� 1.3, and �d�
1.35 at c=0.5. Right: �a�� c=0.02, �b�� 0.05, �c��0.125, and �d�� 0.2
at �2 /�1=1.4. The arrows represent the particle displacement �r j in
the subsequent time interval of width 104. The color is given to each
picture independently, according to its minimum and maximum of
Dj. The average of Dj in the crystalline regions is larger in �a� than
in �a��and �b�� �see Figs. 3 and 4�, leading to the difference in color.
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C. Time correlation function and mean-square displacement

We also examine the quantities constructed from the par-
ticle displacement,

�r j�t� = r j�t + t0� − r j�t0� , �2.8�

of the small particles for various �2 /�1 and c. Here we do
not take the time average of the particle positions on a short
time interval of width 1 to see the short-time ballistic motion
�see the last sentence of Sec. II A�. In Fig. 5, we display the
self-time-correlation function

Fs�q,t� = �
j=1

N1


exp�iq · �r j�t���/N1, �2.9�

at q=2� /�1. In Fig. 6, we show the mean square displace-
ment


��r�t��2� = �
j=1

N1


��r j�t��2�/N1. �2.10�

The average 
¯� in Eqs. �2.9� and �2.10� �and in Eqs. �2.11�
and �2.13� below� is taken over the initial time t0 and over
five independent runs.

In the first series, the long-time behaviors of these two
quantities change abruptly from �2 /�1=1.2 to 1.25, where
Dj changes abruptly. In the second series, these two quanti-
ties change gradually with increasing c. We may determine
the structural relaxation time 
� by Fs�q ,
��=e−1 at this
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wave number �3�. In Fig. 6, we can see that the particle
motions in short times ��1� are ballistic or 
��r�t��2�� t2.
The diffusive behavior 
��r�t��2��4Dt appears at large t for
�2 /�1�1.3 in the upper panel and for c�0.125 in the lower
panel in our simulation time, where D is the diffusion con-
stant of a small tagged particle. For �2 /�1=1.25, 1.3, 1.35,
and 1.4 in the first series �upper panels�, we have 
�=1.9,
1.5, 4.3, and 6.1 in units of 103
 and D=2.3, 2.7, 1.6, and 1.1
in units of 10−5�1

2 /
, respectively. Remarkably, the relaxation
of Fs�q , t� is shortest and 
��r�t��2� is largest for a polycrys-
tal state with �2 /�1�1.25. For c=0.125, 0.2, and 0.4 in the
second series �lower panels�, we have 
�=2.2, 1.1, and 0.64
in units of 104
 and D=0.66, 0.97, and 1.3 in units of
10−5�1

2 /
, respectively, where 
� decreases and D increases
monotonically with increasing c. See explanations of Figs.
7–9 below to interpret these results.

D. Distributions of displacements and broken bonds
parametrized by disorder

The particles with relatively large Dj should have a higher
probability to undergo large displacements ���1� on the

time scale of 
�. Using Sj =Sj�t0� in Eq. �2.6� at the initial
time t0, we pick up the particles with Sj �S in the mean-
square displacement to define

M�S� = �
j=1

N



�S − Sj���r j�t��2�/N , �2.11�

where the small and large particles both contribute to the
sum. In Fig. 7, we plot the derivative M�=dM�S� /dS for
various �2 /�1 and c, which is the distribution of the dis-
placements as a function of S. The area below each curve is
equal to the mean-square displacement 
��r�t��2�
=� j=1

N 
��r j�t��2� /N. Characteristic features are as follows. �i�
In the crystalline states, M� mainly arises from the particle
motions around defects and is very small. �ii� In the first
series, the area is largest for �2 /�1=1.25 due to enhance-
ment of M� around S�1. This indicates a high mobility of
the particles with S�1, giving rise to the behavior of Fs�t�
and 
��r�t��2� in the upper panels of Figs. 5 and 6. �iii� In the
first series, M�decreases with increasing �2 /�1 for not large
S ��2�, while it becomes insensitive to �2 /�1 for large S.
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�iii� In the second series, M� increases with increasing c for
S�2.5, giving rise to the behavior of Fs�t� and 
��r�t��2� in
the lower panels of Figs. 5 and 6.

Another method to visualize the configuration changes at
high densities is to introduce “bond breakage” �3�. For each
particle configuration given at time t0, a pair of particles i
and j is considered to be bonded if

rij�t0� = �ri�t0� − r j�t0�� � A1���, �2.12�

where i and j belong to the species � and �, respectively,
���= ���+��� /2, and we set A1=1.5 here. After a time �t,
the bond is treated to be broken if the distance rij�t0+�t�
exceeds the threshold A2��� with A2=1.75. In Fig. 8, we
display the parts of �a� and �b�� in Fig. 2 �the same parts as
in Fig. 3�, where the broken bonds written as segments are
located around a grain boundary. We recognize that the
bonds of the particles undergoing large displacements are
mostly broken. However, the bonds between the particles
undergoing small collective motion are not broken. In the
same manner as in Eq. �2.11� for M�S�, we define B�S� such

that it is the broken bond number in the range Sij�t0�

�Si�t0�+Sj�t0�� /2�S. That is,

B�S� = �
ij



„S − Sij�t0�…
„A1��� − rij�t0�… � 
„rij�t0 + �t�

− A2���…� . �2.13�

In Fig. 9, we plot the distribution of the broken bonds B�
=dB�S� /dS for various �2 /�1 and c with �t=104. In this
quantity, the contribution from the collective motion without
bond breakage in the crystalline regions should have been
removed, as suggested by Fig. 8. We make comments. �i� It
is of interest to compare the curves of �2 /�1=1.25 in Figs. 7
and 9. The peak of M� at S�1 in Fig. 7 is much reduced in
B� in Fig. 9, but B� there is still not small, suggesting con-
siderable bond breakage at S�1 in this polycrystal state. �ii�
In the glassy configurations, the contributions around S�3
are most dominant. �iii� In the second series, M� in Fig. 7
and B�in Fig. 9 exhibit very similar behavior.

III. SUMMARY AND REMARKS

Using molecular dynamics simulation we have simulta-
neously visualized the local disorder and the slow dynamics
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in polycrystal and glass in a 2D Lenard-Jones binary mix-
ture. We have changed �2 /�1 at c=1/2 in the first series and
c at �2 /�1=1.4 in the second series, with T=0.2� /kB and
	=0.9 held fixed. We summarize our main results and give
comments.

�i� Figure 2 demonstrates strong correlations between the
disorder variable Dj and the long-time particle displacement.
See Refs. �11–13� for similar attempts. The structural hetero-
geneity represented by Dj is a characteristic feature at high
densities and can be seen even in liquid at higher tempera-
tures and even in liquid of one-component systems �see Fig.
10 of Ref. �17��, while the dynamic heterogeneity disappears
in liquid.

�ii� For polycrystal-like configurations, the dynamic het-
erogeneity unambiguously stems from the relatively large
mobility of the particles in the grain boundary regions. The
dynamics in polycrystal is markedly different in the two se-
ries, as in Figs. 5–9. The crystalline regions in the first series
are composed of the two components with size dispersity, as
in Fig. 3, and are more frustrated than those in the second
series.

�iii� In highly frustrated glass, such as for �2 /�1=1.4 and
c=1/2 in our model, the dynamic heterogeneity emerges on
prolonged time scales. The configuration changes in glass are
rare thermally activated events and should very sensitively
depend on the degree of local disorder which is itself hetero-
geneous. In �c�, �d�, and �d�� in Fig. 2, the aggregates of the
chainlike motions extend longer than the spatial scale of Dj.
We note that no tendency of saturation has been observed in
the correlation length of the dynamic heterogeneity with
lowering of T in highly frustrated glass �3,7–10�. In our
small system, however, we cannot obtain reliable results of
the small-q behavior of the structure factor of Dj and that of
the broken bonds, while they both decay as q−2 at relatively
large wave number q �3� �not shown in this paper�. In future
work, we should thus examine the correlation length of Dj
and that of the dynamic heterogeneity at low T in a larger
system.

�iv� We may furthermore envisage a crucial role of the
local free volume in the slow dynamics. In the literature
�22,23�, its slow diffusion was supposed to give rise to the
aging effects. However, it is difficult to detect such behavior
in simulations. In Fig. 3, if the local free volume is identified
with the spacing outside the disks, it is nearly randomly dis-
tributed in �a� �left� and is mostly around the large particles
in �b�� �right�. We even notice that a particle densely sur-
rounded by other particles is often pushed out into a new

cage. It is worth noting that Widmer-Cooper and Harrowell
�12� found no correlation between a local free volume �in
their definition using the inherent structure� and the slow
dynamics.

�v� We have calculated the functions n�S� in Eq. �2.7�,
M�S� in Eq. �2.11�, and B�S� in Eq. �2.13� and have shown
their derivatives dn /dS, dM /S, and dB /dS in Figs. 4, 7, and
9, respectively. These derivatives represent the distributions
of the particle number, the displacements, and the broken
bonds, respectively, as functions of the parameter S �see Eq.
�2.6� for its definition�. The dM /S and dB /dS exhibit similar
behavior except the case of �2 /�1=1.25 and c=1/2 in the
upper panels of Figs. 7 and 9.

�vi� In future work we should investigate the relation be-
tween the size � and the lifetime ��
�� of the dynamic het-
erogeneity for general �2 /�1 and c, which has been done
only at fixed �2 /�1 �3,5–11�.

�vii� We will shortly report on the rheology of polycrystal
states under shear flow. We shall see marked sliding motions
of the particles in the grain boundary regions and large col-
lective motions of the small crystalline regions, both being
induced by shear.

�viii� In the literature of 2D melting �19,20�, the correla-
tion function g6�r� of the sixfold orientation order has been
calculated numerically and experimentally for one-
component systems. In our binary systems, its spatial decay
becomes shorter with increasing �2 /�1 in the first series and
with increasing c in the second series �not shown in this
paper�. In particular, the algebraic decay g6�r��r−1/4 follows
for �2 /�1�1.2 and c�0.02 in the two series, respectively.
This decay characterizes a transition from a “hexatic” to liq-
uid state in one-component systems. We could discuss vitri-
fication and melting in the same context in 2D binary mix-
tures �17,24�, where defects are proliferated and Dj can be a
convenient variable to describe these two transitions.
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